
NANO EXPRESS Open Access

Structural Properties Characterized by the
Film Thickness and Annealing Temperature
for La2O3 Films Grown by Atomic Layer
Deposition
Xing Wang, Hongxia Liu*, Lu Zhao, Chenxi Fei, Xingyao Feng, Shupeng Chen and Yongte Wang

Abstract

La2O3 films were grown on Si substrates by atomic layer deposition technique with different thickness. Crystallization
characteristics of the La2O3 films were analyzed by grazing incidence X-ray diffraction after post-deposition rapid
thermal annealing treatments at several annealing temperatures. It was found that the crystallization behaviors of the
La2O3 films are affected by the film thickness and annealing temperatures as a relationship with the diffusion of Si
substrate. Compared with the amorphous La2O3 films, the crystallized films were observed to be more unstable
due to the hygroscopicity of La2O3. Besides, the impacts of crystallization characteristics on the bandgap and
refractive index of the La2O3 films were also investigated by X-ray photoelectron spectroscopy and spectroscopic
ellipsometry, respectively.
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Background
During the past decades, lanthanum oxide (La2O3) has
raised great research interests due to its remarkable
chemical, thermal, optical, and electrical properties [1–3].
On the one hand, featuring with high dielectric constant
(approximately 27) and large band offsets with silicon
(over 2 eV), La2O3 is one among the most promising
high-k dielectric materials to replace SiO2 and Si3N4 in
advanced metal-oxide gate stack in semiconductor devices
[4]. Up to now, benefiting from the approach of surface
passivation prior to oxide deposition, high-quality ceria/
lanthana gate stack suitable for high-k integration in a
gate-last process has been accomplished [5]. On the other
hand, La2O3 is usually used as a kind of effective dopant
in thermionic emitters [6], ferroelectric ceramics [7], and
oxide catalysts [8], in order to improve properties such as
emission capability, effective dielectric constant, and cata-
lytic activity. Besides, La2O3 thin films have also received

increasing attentions for the various applications in glass
ceramic [9], gas sensor [10], supercapacitor [11], etc.
La2O3 thin films have been prepared by various phys-

ical and chemical deposition methods, such as electron
beam evaporation [12], vacuum evaporation [13], chem-
ical vapor deposition [14], atomic layer deposition
(ALD) [15], and molecular beam epitaxy [16]. Among
the deposition methods mentioned above, due to the na-
ture of the self-limited reaction, ALD has been consid-
ered as one of the most promising deposition techniques
to produce high quality La2O3 thin films with atomic
scale thickness controllability, fine uniformity, and excel-
lent conformality [17]. La2O3 thin films can be found in
several crystalline phases, namely, hexagonal (h-La2O3),
cubic (c-La2O3), amorphous (a-La2O3), or a mixture of
the phases depending on the film deposition method
and post-deposition heat treatment [18]. It is well known
that the structural properties of La2O3 thin film are de-
termined, to a large extent, by its crystallization and
microscopic morphology [19]. Therefore, the study of
the crystallization and structure of La2O3 thin film is of
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great significance for the compatibility of the film ap-
plication into advanced electronic devices. In this art-
icle, the structural properties of La2O3 thin films
prepared by ALD technique were investigated by
means of a variety of measurements. Attentions were
focused on the crystallization conditions of La2O3

film and the structural properties characterized by the
crystalline states.

Methods
La2O3 films were deposited on p-type Si (100) wafers in
an atomic layer deposition reactor (Picosun R-150) using
La(i-PrCp)3 as the La precursor while O3 was used as
the oxidant. Prior to deposition of the films, native SiO2

was removed in a diluted HF solution (1:50). At the de-
position temperature of 300 °C, a steady-state growth
rate of ~0.85 Å/cycle is obtained by optimizing the
process parameters (0.1 s La(i-PrCp)3 pulse/4 s purge
with N2/0.3 s O3 pulse/10 s purge with N2). Ten and
twenty nanometer La2O3 films were prepared by varying
the number of ALD cycles. For both the 10 and 20 nm
La2O3 films, post-deposition rapid thermal annealing
(RTA) was carried out at 400, 600, and 800 °C for 60 s
in vacuum ambient (~1 mbar). The ellipsometric spectra
of La2O3 films were measured before and after annealing
by spectroscopic ellipsometry (SE) system (J.A.Woollam
Co. M2000U, Lincoln, NE, USA) over the wavelength
range from 245 to 1000 nm. In order to address the
evolution of the crystallographic structure, grazing inci-
dence X-ray diffraction (GIXRD) measurements were
carried out at an angle of incidence of 1° on both the
as-grown and annealed La2O3 films. Cross-sectional
high-resolution transmission electron microscopy
(HRTEM) and energy-dispersive X-ray spectroscopy
(EDX) line scan measurements were performed with
[100] direction of the Si substrate to observe the mi-
crostructures and atomic compositions of the La2O3

films. X-ray photoelectron spectroscopy (XPS) analysis

on a Theta 300 XPS system from Thermo Fisher was
employed to investigate the bandgaps of the deposited
films. After being exposed to air in clean room envir-
onment with a relative humidity of 50% for 48 h,
GIXRD and HRTEM measurements were carried out
on the as-grown and annealed La2O3 films again for
further analysis.

Results and Discussion
Figure 1 illustrates the GIXRD analysis performed on
the as-grown and annealed La2O3 films. The powder
patterns of h-La2O3 [20] and h-La(OH)3 [21] are
added for comparison. As the GIXRD measurements
were carried out immediately after the deposition and
annealing process, no peaks attributed to La(OH)3
exist in the GIXRD diffractograms. The 10 nm La2O3

film (as shown in Fig. 1a) shows no diffraction fea-
tures before and after a 400 °C annealing treatment,
suggesting an amorphous disordered structure of the
film. After being annealed at 600 and 800 °C, only
weak crystalline planes such as hexagonal (101) ap-
pear [22, 23], indicating the impossibility of convert-
ing the 10 nm La2O3 film into complete crystalline
phase. The very small and broad peak around 50° in
the diffractogram of the 10 nm La2O3 film annealed
at 800 °C does not fit to the h-La2O3 or h-La(OH)3
patterns. We think it may be formed under the influ-
ence of several crystalline planes of h-La2O3 around
50°. However, for the 20 nm La2O3, the as-grown film
already shows a small degree of crystallinity with a
couple of peaks attributed to h-La2O3 (as shown in
Fig. 1b). After being annealing treated, the intensities
of the GIXRD peaks increase, which means the en-
hancement in the degree of crystallinity. After anneal-
ing at 600 °C, except for the weak cubic (332) plane
[14], the film was mainly crystallized to hexagonal
phase as the GIXRD diffractograms exhibit strong
hexagonal planes such as (101), (102), (103), and

a b

Fig. 1 GIXRD diffractograms of as-grown and annealed La2O3 films deposited on Si substrate. a 10 and b 20 nm La2O3 films. Hexagonal La2O3

and hexagonal La(OH)3 patterns are added for comparison
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(112). Besides, further increase in the annealing
temperature up to 800 °C does not seem to signifi-
cantly affect the GIXRD diffractograms of the film.
That is, upon 600 °C, the increase in the annealing
temperature does not enhance the crystallinity of the
film. Consequently, when annealed upon 600 °C, an
almost complete crystallization could be accomplished
for the 20 nm La2O3 film.
Additional structural information at the La2O3/Si

interface after RTA treatment at 600 °C is provided by
HRTEM-EDX analysis as shown in Fig. 2. For both
10 nm (Fig. 2a) and 20 nm (Fig. 2b) La2O3 films, the lan-
thanum and oxygen in-depth distributions in the EDX
elemental ratio profiles show a parallel profile and the
La/O ratio is close to 2:3 which meets well with the stoi-
chiometry of La2O3. In the HRTEM images, an amorph-
ous region between the Si substrate and the fabricated
film, corresponding to an interfacial layer (IL) formed
during the ALD growth and RTA process [24], could be
found in both Fig. 2a, b. After the amorphous IL, it is
possible to identify a region containing nanometer-sized
crystals in the 10 nm La2O3 film, indicating the exist-
ence of an incomplete structural conversion (from
amorphous to crystallographic structure) during the
RTA treatment. However, the structure of the 20 nm
La2O3 film is a little complicated. With the guidance of
dotted lines, an amorphous region, a nanometer-sized
crystal transition region, and a long-range ordered crys-
tal region could be observed in the HRTEM image of
Fig. 2b. The presence of long-range ordered crystals
manifests, in accordance with the GIXRD results shown
in Fig. 1, that RTA process upon 600 °C induces an al-
most complete crystallization of the 20 nm La2O3 film.
It is worth noting that upon the same annealing condi-

tion of at 600 °C for 60 s in vacuum ambient (~1 mbar),
the 10 and 20 nm La2O3 films show different crystalline

characteristics. We attribute this difference to the RTA-
induced Si diffusion from the substrate into the La2O3

layer [25]. As we know, La2O3 exhibits the highest affin-
ity for Si atoms among the rare-earth oxide films due to
the so called “lanthanide contraction” property of rare-
earth elements [26]. Even in the as-deposited La2O3 film
grown by ALD method, substrate silicon atoms diffuse
moderately and distribute in gradient from Si substrate
to the upper layer, causing the presence of an IL about
1 nm [27, 28]. Besides, part of the as-deposited La2O3

film close to the IL could be considered as Si-riched and
difficult to crystallize as Si rich help to prevent the for-
mation of crystalline La2O3 precipitates [29]. Further-
more, post-deposition annealing causes extra silicon out
diffusion and reaction with excess oxygen in the film.
Consequently, in thin La2O3 film with the thickness of
10 nm or less, during the annealing process, the sub-
strate Si atoms would diffuse deep easily to the upper
layer before the film is crystallized. However, for the
20 nm as-deposited La2O3, since Si atoms distribute in
gradient from Si substrate to the upper layer, a great part
of the film relatively far away from Si substrate is pure.
We think that this part of La2O3 film could be crystal-
lized at appropriate post-deposition treatment such as
RTA carried out at 600 and 800 °C for 60 s in vacuum
ambient (~1 mbar) in this work. Crystallization of the
film brings in an aggressive enhancement in the packing
density and thermodynamic stability. Thus, to a certain
extent, the diffusion of Si atoms from substrate into the
upper layer would be restrained. As a result, the silicate
layer of the 20 nm La2O3 film is slightly thinner than
what could be observed in the 10 nm La2O3 film. Be-
sides, in the 20 nm La2O3 film, only 3~4 nm La2O3

closed to the IL was converted into nanometer-sized
crystals under the influence of Si diffusion during the
annealing process. Complete crystallization of the as-

Fig. 2 HRTEM images and EDX profiles near the interface for La2O3 films annealed at 600 °C. a 10 and b 20 nm La2O3 films
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grown film into the h-La2O3 phase is achieved in the
region not affected by Si diffusion.
The bandgaps of the as-grown and annealed (at

600 °C) La2O3 films were measured by examining the
energy loss of the O 1s core levels as shown in Fig. 3.
As we know, the bandgap equals the energy distance
between the photoemission peak centroid and the on-
set of the features due to single particle excitations,
and it is usually obtained from the inelastic energy
loss features observed on the high binding energy side
of the core level photoemission peaks [30]. The onset
of O 1s loss spectrum was determined by linearly ex-
trapolating the segment of maximum negative slope
to the back ground level [31]. The bandgaps of the
as-grown 10 and 20 nm La2O3 films are determined
to be 5.55 and 5.45 eV, respectively. These values are
in fairly good agreement with Ohmi et al. [32], who
have reported a bandgap of 5.50 eV for non-
crystallized La2O3 on Si substrate. The bandgap of
the annealed 20 nm La2O3 film is determined to be
5.20 eV, which agrees well with the bandgap of
5.30 eV for crystallized La2O3 reported by Zhao et al.
[33]. However, the diffusion of Si during the anneal-
ing process brings in large mounts of La-O-Si bonds
for the 10 nm La2O3, leading to the increase of the
inelastic energy loss during the transition from
valence band to conduction band, which means the

increment of bandgap [34]. As a result, the bandgap
of the annealed 10 nm La2O3 is figured out as 6.0 eV,
which is evidently larger than the bandgap of crystal-
lized La2O3.
Figure 4 illustrates the annealing temperature depend-

ence of refractive indexes for the as-grown and annealed
La2O3 films revealed by SE fitting. The refractive indexes
of the La2O3 films were determined by fitting the ellip-
sometry data using the well-known Tauc-Lorentz disper-
sion mode, which was proposed by Jellison and Modine
and has been successfully applied to a variety of amorph-
ous and crystallized materials [35–37]. As revealed in
Fig. 4, the refractive indexes of the as-grown La2O3 films
increase with varying degrees after being annealed at dif-
ferent temperatures. It was reported that the refractive
index is closely related to the density of materials, being
lower at lower density. Consequently, the increase in the
refractive index is caused by the stress release and densi-
fication during the annealing process [38, 39]. Further-
more, for the 20 nm La2O3 film, an abrupt increase in
the refractive index could be observed when the anneal-
ing temperature increased from 400 to 600 °C, indicating
an aggressive enhancement in the packing density upon
crystallization. As a result, after being annealed at 600 °C,
the 20 nm La2O3 film shows an index of refraction of
1.943 at the wavelength of 632.8 nm, which is much
higher than that of the as-grown film (1.838). The

Fig. 3 Bandgaps for the La2O3 films with different thickness and annealing temperatures. a as-grown 10 and b 10 nm La2O3 annealed at 600 °C,
and c as-grown 20 and d 20 nm La2O3 annealed at 600 °C
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refractive indexes obtained in this work are of good com-
parability with the results reported by Armelao et al. [1]
and Kukli et al. [40].
Figure 5 illustrates the GIXRD diffractograms for the

as-grown and annealed La2O3 films after being exposed

to air in clean room environment with a relative humid-
ity of 50% for 48 h. Compared with the GIXRD diffrac-
tograms obtained before the air exposure as displayed in
Fig. 1, almost all the GIXRD peaks attributed to h-
La2O3 disappear, whereas new peaks attributed to h-
La(OH)3 appear due to the hygroscopicity of La2O3 [22,
23, 41]. It is noteworthy that strong h-La(OH)3 phase
peaks are only found in the well crystallized samples
such as the 20 nm La2O3 films annealed at 600 and
800 °C, while few weak peaks are observed in the
amorphous disordered and nanometer-sized crystallo-
graphic samples. Besides, it seems that the air exposure
has a much heavier effect on the 20 nm La2O3 than
that on the 10 nm La2O3. For clarity, cross-sectional
HRTEM measurements on the annealed 10 and 20 nm
La2O3 films after the air exposure were performed. The
cross-sectional HRTEM image of the annealed 20 nm
La2O3 after being exposed to air is shown in Fig. 6b, in
which much more uneven interface and surface are ob-
served than what can be found in the 10 nm La2O3.
The deteriorations in the interface and surface proper-
ties are attributed to the degradation in the film density
caused by the conversion from h-La2O3 to h-La(OH)3.
With the time exposed to air, the amount of La(OH)3
in La2O3 film increases and then the density of the film
is degraded, resulting in the changes of the surface and
interfacial morphologies [42]. However, the existence of
large mounts of LaSiO in the 10 nm La2O3 enhances
the stability of the film structure, providing a high im-
munity against moisture ambient.

Conclusions
The crystallization of La2O3 film grown by atomic
layer deposition on Si substrate is restricted by the
thickness of the film and the post-deposition annealing
temperature. For thin (~10 nm) La2O3 film, only
nanometer-sized crystals are formed after the anneal-
ing treatment due to the diffusion of Si substrate. For

Fig. 4 Annealing temperature dependence of refractive index for
ALD-La2O3 with different thickness. a 10 nm La2O3 films and b 20
nm La2O3 films

Fig. 5 GIXRD diffractograms for as-grown and annealed La2O3 after being exposed to air for 48 h. a 10 nm La2O3 films annealed at 600 °C and
b 20 nm La2O3 films annealed at 600 °C. Hexagonal La2O3 and hexagonal La(OH)3 patterns are added for comparison
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thick (~20 nm) La2O3, films can be mainly crystallized
into h-La2O3 upon RTA performed in vacuum environ-
ment at 600 °C. After being crystallized, the refractive
index of La2O3 film increases dramatically, while the
bandgap is slightly decreased. After an exposure to air
for 48 h, the h-La2O3 films are converted into h-
La(OH)3 due to the hygroscopicity of La2O3.
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